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Abstract

The Affordable Care Act (ACA) was intended to expand Medicaid eligibility significantly at the federal

level. However, the U.S. Supreme Court ruled in 2012 that the federal government could not compel states

to expand their eligibility. To date, 39 states (including D.C.) have expanded Medicaid eligibility, with

considerable variability in eligibility guidelines between states. A large literature has examined the effects of

these expansions on health insurance, economic status, and health outcomes. The bulk of this research has

used the difference-in-differences (DD) research design to estimate the causal effects of Medicaid expansions

on a host of outcomes. However, recent methodological innovations have shown that these estimation strate-

gies may be biased in the presence of differential treatment timing. I re-estimate the effects of Medicaid

expansion on health insurance coverage among a low-education sub-sample and compare the results from

naive DD and event study specifications to the newer estimation strategies. I find that though there is

substantial potential for bias, I still detect a significant increase in insurance rates. Other results obtained

using this research design may require re-examination to verify that they hold true when estimated without

bias.
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1 Introduction

The Affordable Care Act (ACA), signed into law in 2010, was the largest expansion of health insurance

coverage to nonelderly adults in half a century. Although the ACA introduced a host of reforms, one of the

central components was expanding Medicaid coverage to nearly all adults with incomes up to 138% of the

Federal Poverty Level (FPL). This federal eligibility increase, which was scheduled to take place in January

2014, was projected to reduce uninsurance by 32 million people in conjunction with the other components

of the ACA (Gruber, 2011). However, the United States Supreme Court ruled in National Federation of

Independent Business v. Sebelius that the Medicaid expansion provisions was unconstitutionally coercive

as written (Roberts, 2012). As a result, there is considerable heterogeneity in the adoption of Medicaid

eligibility expansions, with 39 states (including DC) gradually adopting the expansions to date. At the time

of writing, there are also proposals to expand under consideration in multiple holdouts (KFF, 2022). Thus,

over the past decade, there have been eligibility expansions for public health insurance in the United States

at a massive scale, though they have been spread unequally across states.

This setting offers an ideal opportunity to measure the effects of these expansions on a variety of outcomes,

including insurance coverage, health outcomes, and economic status. These expansions occurred in a wide

variety of states, increasing the generalizability of any findings on their effects in comparison with other

approaches that focused on a certain state or smaller geographical unit. Additionally, their setting resembles

the health policy environment of the broader United States, taking place in a landscape of direct purchase

and employer-sponsored insurance. Beyond the empirical appeal, the question of how health insurance affects

health and financial well-being is foundational in health economics, stretching back to early theoretical work

on health demand and moral hazard (Grossman, 1972; Arrow, 1963; Pauly, 1968), as well as landmark

experimental evidence in health policy (Manning et al., 1987). Overall, state-level Medicaid expansions offer

a fertile setting to test a number of key empirical and theoretical questions in health economics, and rigorous

studies of their effects may also be valuable for policymakers in ongoing debates.

Health policy researchers have risen to the task, evaluating the effect of Medicaid expansions on insurance

coverage, crowd-out, cancer testing, employment levels, spillover effects, and dozens of other outcomes.

Foundational in this literature is the first stage of expansion effects: increases in insurance coverage, generally

considered the primary channel through which Medicaid expansions affect individual-level outcomes. In

general, analyses have found that Medicaid expansions caused significant increases in Medicaid coverage and

significant decreases in uninsurance rates (Courtemanche, Marton, Ukert, et al., 2016; Miller & Wherry,

2017; Kaestner et al., 2017). However, the vast majority of this literature relies on difference-in-differences

(DD) research designs, often with differential treatment timing (given the staggered roll-out of the program).

These designs can exhibit bias in the presence of differential treatment timing, a problem that a growing

econometric literature has begun to address (Goodman-Bacon, 2021). When conducting a DD in the presence

of differential treatment timing, the aggregate effect estimate can be decomposed into three broad groups

of 2x2 settings: Not Treated vs. Treated, Early Expander vs. Treated, or Late Expander vs. Treated.

The first type is relatively harmless, and represents the causal effect of interest. However, the latter two

are comparisons that do not compose the aggregate causal effect of interest without strong assumptions

on homogeneous treatment effects that are constant over time. Because these assumptions are generally

unrealistic, applying a naive DD specification to a scenario with differential treatment timing may yield bias

in the estimates of the causal effect. Thus, the effects of state-level expansion, which occurred in a staggered

roll-out (see Figure 1), may be biased due to these effects.

A flourishing literature has begun to propose new estimators that tackle this problem using a variety of
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methods (Gardner, 2021; Sun & Abraham, 2021; Callaway & Sant’Anna, 2021; Borusyak et al., 2022; de

Chaisemartin & D’Haultfœuille, 2020; Cengiz et al., 2019). I first replicate the results of earlier work on the

effects of the ACA state-level expansions using the standard DD and event study specifications. Using the

American Community Survey (ACS) I find, in broad accordance with preexisting literature, that state-level

Medicaid expansions reduced uninsurance rates among a low-education sub-sample that was likely to be

targeted by the eligibility expansions. I diagnose the proportion of this effect that is attributable to faulty

2x2 comparisons and find that approximately 30 percent of the effect is composed of these. Then, I apply the

new estimators from the recent econometric literature. I find that state-level Medicaid expansions did, in fact,

reduce uninsurance rates by 3.5—4.5 percentage points. My results on the effects of Medicaid expansion on

health insurance (a widely studied topic in health economics) in previous literature are similar, statistically

and economically, across approaches, suggesting that realized bias from differential timing effects is small.

Despite this, estimates of downstream effects of Medicaid expansions are also in need of replication, and

policymakers may need to revise their expectations of the effects of Medicaid expansions. Additionally, my

findings highlight the necessity of applying econometric innovations in difference-in-differences to empirical

results to verify their accuracy and robustness. Finally, I offer an example of a widely studied topic in applied

microeconomics that new econometric estimators are appropriate for.

The remainder of the paper takes the following form. Section 2 reviews previous literature on the effects

of Medicaid expansion and the DD research design. Section 3 describes my data, and Section 4 illustrates

my empirical approach. Section 5 presents the results, and Section 6 concludes.

2 Background

2.1 Medicaid Expansion

There is a rich literature examining the effects of subsidized health insurance provision on health and eco-

nomic outcomes. Some of the earliest work used an experimental setting to find that modest cost sharing

reduces use of services with negligible effects on health for the average person (Manning et al., 1987). More

recently, the Oregon Health Insurance Experiment found substantive reductions in disastrous financial con-

sequences from medical costs, as well as improvements to mental and self-reported health (Finkelstein et

al., 2012, 2019). However, the vast majority of analyses have not had the benefit of an experimental setting

and have instead used quasi-experimental techniques to estimate the effects of health insurance provision.

Broadly, this literature has found that earlier expansions of subsidized insurance improved health insurance

coverage as well as health outcomes like birth weight (Currie & Gruber, 1996a,b). Additionally, results have

suggested that government insurance coverage expansions reduced mortality, though they also had a sig-

nificant “crowd-out” effect on private health insurance coverage (Goodman-Bacon, 2018; Cutler & Gruber,

1996; Gruber & Simon, 2008). Recent Medicaid expansions offer a new setting in which to test the findings

established by this earlier work in a health insurance landscape that has shifted significantly.

The Affordable Care Act (ACA) was signed into law by President Barack Obama in March of 2010 and

expanded health insurance to millions of Americans through Medicaid expansions for low-income families

and subsidies to purchase private health insurance for middle-income Americans. States were given the

option to expand Medicaid beneath 138% of the federal poverty guidelines (FPG) starting in September

2010 and were required to do so starting on January 1, 2014. four states and the District of Columbia used

new options (Sommers et al., 2014) under the ACA and expanded Medicaid early in 2010-2011 to low-income
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individuals, including parents and childless adults (who were most impacted by the expansions; Medicaid

already covered children at generous levels). In 2012, the US Supreme Court ruled in National Federation

of Independent Business (NFIB) v. Sebelius that states had the option to expand Medicaid and could not

be coerced to expand the program under the ACA. Since 2014 (and at the time of this writing), a total of

38 states and the District of Columbia have adopted Medicaid expansion (KFF, 2022), and 12 states have

not expanded Medicaid for low-income families and individuals. Medicaid expansion was not uniform and

there was wide variation in the timing and location of adoption.

Some of the first work examining the effects of Medicaid expansions focused on changes in health insurance

coverage (and source of coverage). In general, this literature has found that Medicaid expansions significantly

increased Medicaid coverage and reduced uninsurance rates in those states that expanded relative to those

that did not (Kaestner et al., 2017; Courtemanche, Marton, & Yelowitz, 2016; Miller & Wherry, 2017;

Sommers et al., 2015; Frean et al., 2017). These analyses typically leverage the expansions that occurred

in 2014 among 22 states, which yield a clean 2x2 DD research design. However, before that point 5 states

had already expanded and since 2014, 12 additional states have expanded. These states are different from

the 2014 expanders in terms of population and political composition (among other characteristics). Other

literature has examined how these expansions affected health insurance gaps between different populations

and found that they significantly increased health insurance coverage across age and racial groups (Wehby

& Lyu, 2017).

Building on these first results, many other analyses have leveraged the Medicaid expansion to examine

effects on economic outcomes, finding that the expansions did not significantly impact work effort of recip-

ients, but did cause physicians to increase their labor supply (Kaestner et al., 2017; Neprash et al., 2021).

Additionally, other work has examined the effects of the ACA Medicaid expansions on health outcomes, with

mixed results. Some analyses found that they reduced mortality in the aggregate, while others found null

effects on other health outcomes (see inter alia; Miller et al. (2021); Soni et al. (2018); Borgschulte & Vogler

(2020); Cawley et al. (2018); Allen & Sommers (2019)). Nearly all of these analyses leverage a DD design

to estimate causal effects, but to my knowledge, only two recent papers have confronted the potential issue

of differential treatment timing: Miller et al. (2021) and Nikpay (2022). Miller et al. (2021) use expansions

from 2014—2017 and linked survey and administrative data to estimate the effects of Medicaid expansion

on mortality, and they find that ACA expansions resulted in a roughly 10% decrease in mortality. They find

that staggered treatment timing does not play a large role in their reduced-form effect, which is unsurprising

given that their treatment variation is clustered in the 2014 treatment year. Nikpay (2022) examines the

effects of Medicaid expansions through 2019 on hospital financing of safety net and non-safety-net patients,

and finds that the expansions shifted approximately $5B from safety-net to non-safety-net hospitals. They

find some evidence of heterogeneous treatment effects depending on treatment cohort, though they ultimate

conclude it does not significantly bias their overall findings. However, neither paper leverages the newer

expansions that have occurred since 2017, and as researchers begin to estimate the effects of these reforms,

it is crucial to examine the influence of differential treatment timing on effect estimates, especially on the

first stage of health insurance coverage.

2.2 Difference-in-Differences

In many settings, social science researchers are unable to use experimental methods to answer causal questions

due to ethical, resource, or other concerns. Difference-in-differences seeks to estimate the causal effect of an

event or series of events, often policy changes. The researcher compares the change in the outcome variable
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among units (often geographical entities) that receive “treatment” before and after the event(s) with those

changes that units who are not “treated.” This yields the first differences of After-Before for both treated

and untreated units. Then, they take the difference-in-differences between these quantities to yield a causal

effect of the policy or event.

Difference-in-differences is built on the assumption that an outcome, Yist, for individual i at time t in

state s, is composed of a time-invariant state effect (γs) and a year effect (λt) common across states:

Untreated States: Yist = γs + λt + ϵist Treated States: Yist = γs + λt + δst + ϵist

Treated state outcomes have the same components, with the addition of a treatment effect δst. Thus, I use

a regression of the following form to identify the treatment effect:

Yist = α+ γ(Ts) + λ(Dt) + δ(Ts ·Dt) + ϵist

Ts is a dummy variable that indicates treated states, Dt is a dummy variable that represents post treatment

periods, and δ is the coefficient of interest.

One of the largest concerns with difference-in-differences was first highlighted in Goodman-Bacon (2021).

For many years, researchers had been applying the difference-in-differences technique to situations where

multiple units were being treated at different points in time. Goodman-Bacon highlighted how this could

bias the coefficient estimates. If there is variation in treatment timing, then they want to account for this

variation in treatment timing and understand whether the coefficient on the post*treatment dummy is due to

comparisons of treated vs. untreated units, late treated vs. early control, or late control vs. early treated. In

his original paper, Goodman-Bacon proposed an estimation technique that runs the individual 2x2 difference-

in-differences estimates that compose a coefficient from a differential timing DD, also computing their weight

in the aggregate coefficient (determined by variance). From there, his technique shows the percentage of

the effect that is due to comparisons of treated vs. untreated units (the key causal effect of interest) as

opposed to late treated vs. early control or late control vs. early treated comparisons. Though valuable as a

diagnostic, it unfortunately does not allow the estimation of causal effects absent bias. Various researchers

have proposed assessments and alternative estimates to make difference-in-differences usable with differential

treatment timing.

Sun & Abraham (2021) highlight that the same problems of contamination and biased comparisons also

affect event study estimates when differential treatment timing is involved. As a result, they propose an

estimator for event studies that accounts for differential timing by arranging groups in cohorts according to

when they are first treated and weighting their coefficient by how long they are included in the data window

(how many leads and lags they have). Gardner (2021) introduces an alternative way to think about the

problems involved in DD with multiple time periods: it introduces bias that is not independent of group and

period fixed effects; it projects heterogeneous treatment effects onto group and period fixed effects rather

than the treatment status itself. One way to combat this bias is to run a first stage using only untreated

units to determine group and period fixed effects, and then residualize the outcome by subtracting out

group and period FEs. Then, I use this residualized outcome to estimate a standard DD (or event study)

while accounting for differential treatment timing. Callaway & Sant’Anna (2021) focus on decomposing the

overall treatment effect parameter into the individual 2x2 comparisons that are unaffected by the differential

timing issues. Then, they propose aggregating these comparisons into estimators for treatment effect by

group g, the treatment cohort. These values will then be averaged to arrive at the overall treatment effect

for all groups that participated in the treatment—analogous to the ATT in the simple 2x2 case. In de
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Chaisemartin & D’Haultfœuille (2020), the authors propose a new estimator that not only tackles the issues

with differential treatment timing, but also addresses heterogeneous treatment effects in a two-way fixed

effects setting. One additional assumption that their estimator requires is that every time a unit is switching

from untreated to treated between two periods, there must also be at least one unit that is untreated in both

periods of interest. They also provide an estimator for the effect of leaving treatment if units switch from

treated back to untreated. They rely on simply t− 1 and t to estimate a 2x2 period, then aggregating these

to estimate an overall treatment effect. Finally, in Borusyak et al. (2022), the authors focus on the event

study or staggered roll-out designs that accompany difference-in-differences when applied in contexts where

differential timing is present. They use an “imputation” approach where they compute unit and period fixed

effects using untreated units only, and then use these to impute the untreated potential outcomes, which can

then be leveraged to find an estimated treatment effect for each treated observation. These are then weighted

to compute an aggregate treatment effect. I apply this suite of techniques to re-estimate the relationship

between Medicaid expansions and health insurance outcomes.

3 Data

I use the American Community Survey (ACS), a nationally representative yearly cross-section of approx-

imately 3 million U.S. adults in all 50 states that contains demographic, economic, social, and housing

information. I use data from 2008-2019, the years publicly available in the IPUMS-USA database at the

University of Minnesota Population Center (Ruggles et al., 2022). The ACS is valuable due to its large

yearly sample sizes, nationwide coverage, and high response rates—truthful responses are required by law.

For these reasons, much previous literature has used the ACS to estimate the effects of Medicaid Expansion,

though some analyses have used alternative sources like the National Health Interview Survey (NHIS) or the

Behavioral Risk Factor Surveillance System (BRFSS) (Kaestner et al., 2017; Miller & Wherry, 2017; Soni et

al., 2018; Courtemanche, Marton, Ukert, et al., 2016)

Since 2008, the ACS has also recorded information about the health insurance coverage of each respon-

dent. Specifically, I consider whether an individual has any health insurance coverage and whether that

health insurance is privately provided (e.g., purchased directly or sponsored by an employer) or publicly

provided through public health insurance programs like Medicare, Medicaid, or (for the case of current or

past military personnel) TRICARE/Veterans Affairs coverage. It is important to consider that the sources

of health insurance are not necessarily mutually exclusive—participants can report more than one type of

health insurance source. I expect state-level Medicaid expansions under the ACA to be associated with an

increased likelihood of having Medicaid coverage, and decreased likelihood of being uninsured. I use age and

its square, race/ethnicity, marital status, number of children, and family size as covariates in my specifica-

tions. I also use educational attainment to restrict to sub-samples most likely to be affected by the ACA

Medicaid expansions. I use missing indicators with missing data on my covariates, and exclude respondents

who did not report their health insurance coverage.

4 Empirical Approach

I first estimate a standard DD design:

yist = β0 + β1(MEDICAIDEXPst) + β2γ + β3δ + β4Xist + ϵist (1)
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yist is an individual’s health insurance status and source of coverage, MEDICAIDEXPst is an indicator

variable that returns a 1 when individual i lives in a state s that expanded Medicaid at or before time

t, γ is state fixed effects, δ is year fixed effects, Xist is a vector of individual covariates, and ϵist is an

idiosyncratic error term. Hence, my coefficient of interest, β1, is intended to capture the causal effect of

Medicaid expansion on health insurance coverage. This standard empirical approach has been employed

across several papers, including Miller & Wherry (2017); Kaestner et al. (2017); Courtemanche, Marton,

Ukert, et al. (2016).

Additionally, I generate event study estimates of the effects of the ACA Medicaid expansions on the

likelihood of insurance coverage for low-education respondents. In these models I replace the single Medicaid

expansion indicator with a series of event-time indicators, interacting each relative event time indicator with

the DD dummy. As standard in the literature, I normalize the first lead operator (T-1) to zero. These results

are presented in Section 5.3.

However, because recent literature has found that using the naive DD and event study specifications

in settings with differential treatment timing, I also estimate this same equation using the specifications

outlined in Gardner (2021); Sun & Abraham (2021); Callaway & Sant’Anna (2021); Borusyak et al. (2022);

de Chaisemartin & D’Haultfœuille (2020); Cengiz et al. (2019). I then compare the effect estimates I find

with each specification to assess the bias in previous estimates of the effect of Medicaid expansion, presented

in Section 5.4.

5 Results

5.1 Raw Trends and Summary Statistics

Table 1 presents descriptive statistics for respondents in expansion vs. non-expansion states with educational

attainment at or below a high school diploma, my primary analysis sample. I focus on people with educational

attainment at or below a high school diploma to prevent the results from being biased by people endogenously

changing their hours of work (and therefore salary) to ensure Medicaid eligibility, around the 138% FPL

threshold. This is consistent with prior research that has raised this concern (Kaestner et al., 2017; Miller

et al., 2021) and suggested using “targeted samples” such as cut-offs for education (in this case a high

school diploma) to alleviate endogeneity concerns. Table 1 shows that the majority of low-education adults

had health insurance, while a lower share had employer-sponsored insurance. Low-income individuals in

expansion states were more likely than low-income individuals in non-expansion states to have Medicaid

coverage.

Figure 2a presents unadjusted trends in the likelihood that individuals in households with a high school

education or less have Medicaid coverage for ACA expansion states (blue), and non-expansion states (red).

Several patterns are apparent. First, there is clear evidence that adults in expansion states are more likely to

be covered by Medicaid than adults in non-expansion states. Second, there is visual support demonstrating

that state-level Medicaid expansions under the Affordable Care Act increased Medicaid coverage for low-

education adults in expansion states. There is also suggestive visual support in Figure 2b for the idea that

the ACA’s Medicaid expansion reduced uninsurance rates more in expansion states than in non-expansion

states: the decreases in uninsurance post-expansion appear larger for respondents in expansion states as

compared to the associated increases for respondents in non-expansion states. I formalize and test for these

differences in a regression framework in Section 5.3.
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5.2 Goodman-Bacon Decomposition

To determine the potential influence of comparisons of states with different treatment times, I implement the

Goodman-Bacon (2021) decomposition that examines the role of each 2×2 DD comparison in the two-way

fixed effects DD estimate. Table 2 and Figure 3 display the results of this analysis. Column 1 presents

the type of comparison, Column 2 presents the average treatment effect estimated among that type of

comparison, and Column 3 displays the weight that each type of comparison receives when aggregating to

form the overall DD coefficient. I find that comparisons between states of different timing groups compose

approximately 30% of the overall treatment effect estimate, and that comparisons of never-treated states

with those “switching” on their treatment compose about 66% of the overall treatment effect estimate. The

remainder (about 4%) comes from within-group variation in covariates. This composition suggests that

a significant portion of the treatment effect estimate is composed of comparisons that could potentially

bias the effect estimates. However, when I examine the estimated coefficients for each group, I find that

the coefficient for different timing groups comparisons is qualitatively similar to that for never vs. treated

comparisons. Though the potential for bias is significant, I do not find any using the diagnostic tool of the

Goodman-Bacon Decomposition.

Figure 3 illustrates the results of a more detailed Goodman-Bacon Decomposition. Each of the individual

points represents a specific 2x2 comparison, the x-axis displays the weight of that comparison in constructing

the overall DD coefficient, and the y-axis displays the point estimate for that comparison. These results

suggest that within-timing group comparisons are not systematically biased in one direction (as they fall

relatively evenly on both sides of the coefficient estimate, denoted by the red line).

5.3 Difference-in-Differences and Event Study

I estimate the effects of ACA Medicaid expansions on uninsurance rates among my low-education sample

using equation (1). Column 1 of Table 3 presents the results of this specification. I find that the ACA

state-level Medicaid expansions reduced uninsurance rates by 4.2 percentage points. This represents a 25

percent decrease from the base period mean uninsurance rate, 16.7%. This aligns with prior literature on

the effects of Medicaid Expansion on uninsurance rates, which tends to find effect sizes of approximately 3–4

percentage points (Kaestner et al., 2017; Miller & Wherry, 2017; Courtemanche, Marton, & Yelowitz, 2016;

Miller et al., 2021).

Next, I estimate the effects of ACA Medicaid expansions on uninsurance rates among my low-education

sample using an event study design. Column 1 of Table 4 presents the results of this specification. Each

column is a different estimation strategy, and each row presents the coefficient in a time period relative to 1

year before expansion (thus the T-1 coefficient is 0 and omitted). For example, T-4 presents the DD coefficient

4 time periods before the expansion occurred. I find that the ACA state-level Medicaid expansions reduced

uninsurance rates by 2.3 percentage points in the first year and 4-5 percentage points in the succeeding 4

years. This aligns with prior literature on the effects of Medicaid Expansion on uninsurance rates, which

tends to find effect sizes of approximately 3–4 percentage points after the first year (Kaestner et al., 2017;

Miller & Wherry, 2017; Courtemanche, Marton, & Yelowitz, 2016; Miller et al., 2021). Additionally, I find

no evidence of differential pre-trends, as my pre-period dummy coefficients are all insignificant.
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5.4 Improved Estimation Strategies

Additionally, I use the estimators proposed in Gardner (2021); Callaway & Sant’Anna (2021) to re-estimate

the simple DD specification in a manner robust to differential treatment timing, presented in Table 3. Given

the results of the Goodman-Bacon Decomposition, I expect broadly similar results to my point estimate of

-0.042 from the OLS TWFE regression. Column 2 displays the results of the Gardner (2021) estimation

strategy, and I find a very similar effect of -0.041 (with similar standard errors and statistical significance).

Finally, I use the estimator proposed in Callaway & Sant’Anna (2021), with results displayed in Column 3.

The point estimate is again very similar to that estimated using OLS and the Gardner method. Overall, these

results are fairly robust across approaches—the estimation strategies that correct for differential treatment

timing present results similar to those estimated using OLS,and they are statistically indistinguishable.

Additionally, I use the estimators proposed in Gardner (2021); Borusyak et al. (2022); Cengiz et al.

(2019); de Chaisemartin & D’Haultfœuille (2020); Sun & Abraham (2021); Callaway & Sant’Anna (2021)

to re-estimate the simple event study specification in a manner robust to differential treatment timing,

presented in Table 4. Given the results of the Goodman-Bacon Decomposition, I expect broadly similar

results to my point estimates from the OLS event study regression. Column 2 displays the results of the

Gardner (2021) estimation strategy, and I find similar results, except in period T+4, where the coefficient

is approximately 1/4 the magnitude of that estimated using OLS. Column 3 displays the results of the

Borusyak et al. (2022) estimation strategy, and I find broadly similar results to those estimated using OLS.

Column 4 presents the results estimated using the strategy proposed in Cengiz et al. (2019), and I find

generally similar effect sizes. I use the estimator proposed in de Chaisemartin & D’Haultfœuille (2020), with

results displayed in Column 5. The point estimates are again very similar to that estimated using the OLS,

Gardner, and Borusyak methodologies. The results estimated using Sun & Abraham (2021) are displayed

in Column 6, showing broadly similar results. Finally, the results estimated using Callaway & Sant’Anna

(2021) are displayed in Column 7, showing broadly similar results. In the last three estimators, I also see

evidence of potential violations of the parallel trends assumption. Though statistically significant, these

lead coefficients are generally small in substantive terms. Overall, these results mostly reaffirm previous

literature—though most of the estimation strategies that correct for differential treatment timing present

results similar to those estimated using OLS, another presents a much smaller effect size (though statistically

indistinguishable). These results are also displayed in graphical format in Figure 4, where the estimates from

the improved estimation strategies are broadly similar to those obtained using the OLS TWFE specification.

6 Conclusion

A large body of literature has illustrated how state-level Medicaid expansions improved health insurance

coverage among low-income individuals in the United States. Additionally, further analyses have examined

the downstream health and economic impacts of these expansions, finding mixed evidence on health impacts

and general improvements in economic outcomes. These estimates have informed health policy debates

as more states consider expanding their Medicaid eligibility through the channels set out in the ACA.

Though this literature has blossomed, most of the analyses rely on a single empirical strategy, difference-

in-differences, to estimate the causal effects of ACA Medicaid expansions. However, recent literature in

econometrics has highlighted how this strategy can be biased in settings of differential treatment timing and

proposed diagnostics and alternative estimators that can address these concerns. I apply these econometric

tools to re-estimate the effects of ACA Medicaid expansions on health insurance coverage among a low-
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education subsample, and find substantive potential for bias in previous estimates using a Goodman-Bacon

decomposition. However, despite this potential, I find no evidence of significant bias in previous estimates.

Instead, I reaffirm the central research finding that Medicaid expansions reduced uninsurance rates by 4-5

percentage points among adults with a high school educational attainment or lower, a target population for

these policies. I find that this relationship is robust to a suite of different DD and event study specifications.

There are several limitations to my analysis. The ACS lacks information on access to care, health

services utilization, and health outcomes, and so I can only examine effects on health insurance coverage. I

leave examination of these other health outcomes in this econometric context to future research. Secondly,

misreporting health insurance status may bias my results. Some respondents may inaccurately report their

health insurance status. Previous research has documented an undercount of Medicaid coverage in the

ACS since some participants with Medicaid managed care misreport their insurance status as private health

insurance (Boudreaux et al., 2019).

Despite these limitations, my findings reaffirm the broad effects of the ACA Medicaid expansions and

suggest that eliminating or scaling back the Medicaid expansion could reduce health insurance coverage

among low-education adults. My analysis is one of the first (to my knowledge) to use econometric methods

robust to differential treatment timing to examine ACA Medicaid expansions, joining Nikpay (2022) and

Miller et al. (2021). These two analyses focus on the impacts of expansions on the target efficiency of

hospitals and mortality, while my analysis examines insurance coverage. Additionally, I add to the small

number of studies that compare the new econometric estimators developed to diagnose and correct for issues

of treatment timing and apply them to an empirical setting. State-level Medicaid expansions form the

basis of a large literature in health economics and health services research, and my application highlights

the potential for other applications throughout applied microeconomics. Finally, my results illustrate the

importance of applying these methodologies when estimating difference-in-differences or event studies in

settings with differential treatment timing.
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Tables and Figures

Figure 1: Timeline of state-level Medicaid expansions up to 2019.

Source: KFF (2022). Colors correspond to expansion years. Since 2019, 5 additional states (Idaho, Utah, Nebraska,

Oklahoma, and Missouri) have passed Medicaid expansions. Because I do not leverage this variation in my analysis

(given that it is out of my sample period), I mark these states as Non-Expansion states.
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Figure 2: Raw trends in insurance coverage, 2008-2019

(a) Medicaid Coverage (b) Uninsurance Rate

Source: American Community Survey 2008-2019, authors’ calculations. Blue line denotes Medicaid expansion states,

and red line denotes non-expansion states.
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Figure 3: Goodman-Bacon Decomposition of DD on Uninsurance Rates.

Source: American Community Survey 2008-2019, authors’ calculations. Created using the bacondecomp package on

Stata. The x-axis shows the weight of the individual 2x2 DDs in the composition of the aggregate effect, and the

y-axis is the estimated effect for that specific 2x2 DD. Icons denote the type of comparison (never-treated vs. timing

is the unbiased effect of interest).
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Figure 4: Event study results across estimation strategies.

Source: American Community Survey 2008-2019, authors’ calculations. Each series is an event study coefficient,

calculated using a different estimation strategy. All specifications include state and time fixed effects, as well as a

vector of individual-level covariates (age and its square, race/ethnicity, marital status, number of children, and family

size). Standard errors clustered at the state level were used to calculate 95% confidence intervals.
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Table 1: Summary Statistics, Expansion vs. Non-Expansion States.

(1) (2)
Non-Expansion State Expansion State

Age 41.914 41.844
(13.676) (13.685)

Male 0.491 0.494
(0.500) (0.500)

Non-Hispanic White 0.663 0.680
(0.473) (0.466)

Non-Hispanic Black 0.139 0.085
(0.346) (0.279)

Non-Hispanic All Other Races 0.053 0.099
(0.225) (0.298)

Hispanic 0.144 0.136
(0.351) (0.343)

Married 0.547 0.531
(0.498) (0.499)

Divorced or Widowed 0.162 0.141
(0.369) (0.348)

Never Married 0.291 0.327
(0.454) (0.469)

Under the FPL 0.174 0.157
(0.379) (0.363)

Uninsured 0.194 0.128
(0.396) (0.335)

Private Health Insurance 0.706 0.735
(0.455) (0.441)

Public Health Insurance 0.137 0.172
(0.344) (0.377)

Employer-Sponsored Insurance 0.590 0.635
(0.492) (0.481)

Medicaid 0.095 0.140
(0.293) (0.347)

Directly Purchased Insurance 0.120 0.112
(0.325) (0.315)

TRICARE Insurance 0.034 0.022
(0.182) (0.148)

Medicare 0.044 0.039
(0.206) (0.193)

VA Insurane 0.022 0.016
(0.146) (0.125)

IHS Insurance 0.006 0.007
(0.079) (0.082)

Observations 3592751 6782394

Source: American Community Survey 2008-2019, authors’ calculations. Means and standard deviations (presented

in parentheses) reported, stratified by binary state expansion variable
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Table 2: Goodman-Bacon Decomposition of DD on Uninsurance Rates.

Beta Total Weight
Timing Groups -.0461504 .2990919
Never vs. Treatment -.0429702 .6634117
Within Group .00852 .0374964

Source: American Community Survey 2008-2019, authors’ calculations. Created using the bacondecomp package on

Stata. The Total Weight column shows the weight of the individual 2x2 DDs in the composition of the aggregate

effect, and the Beta column is the estimated effect for that type of 2x2 DD. Rows denote the type of comparison

(never-treated vs. timing is the unbiased effect of interest).
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Table 3: Difference-in-differences results across specifications.

(1) (2) (3)
OLS Gardner Callaway

MEDICAIDEXPst -0.0416∗∗∗ -0.0405∗∗∗ -0.0353∗∗∗

(0.0119) (0.0118) (0.0089)
Observations 10375145 10375145 10375145

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Source: American Community Survey 2008-2019, authors’ calculations. Each entry is a difference-in-differences

coefficient, calculated using a different estimation strategy. All specifications include state and time fixed effects, as

well as a vector of individual-level covariates (age and its square, race/ethnicity, marital status, number of children,

and family size). Standard errors are clustered at the state level. Column 1 presents the results of a tradition

ordinary-least-squares two-way fixed-effects specification. Column 2 presents the results of the estimation strategy

proposed in Gardner (2021). Column 3 presents the results of the estimation strategy proposed in Callaway &

Sant’Anna (2021).
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Table 4: Event study results across estimation strategies.

(1) (2) (3) (4) (5) (6) (7)
OLS Gardner Borusyak Cengiz Chaisemartin Sun Callaway

T-4 0.00518 0.000372 0.00102 0.0021 -0.0059∗∗ -0.0009 -0.0001
(0.00729) (0.000668) (0.00377) (0.0052) (0.0015) (0.0009) (0.0016)

T-3 0.00124 -0.00152 -0.00939∗ 0.0001 0.0012 -0.0049∗∗ -0.0063∗∗

(0.00522) (0.000979) (0.00503) (0.0047) (0.0018) (0.0011) (0.0020)

T-2 -0.000991 -0.000228 0.00421 -0.0008 0.0010 -0.0013 0.0012
(0.00272) (0.000818) (0.00538) (0.0027) (0.0025) (0.0010) (0.0017)

T -0.0227∗∗∗ -0.0242∗∗∗ -0.0238∗∗∗ -0.0195∗∗∗ -0.0238∗∗∗ -0.0231∗∗∗ -0.0213∗∗∗

(0.00491) (0.00714) (0.00637) (0.0047) (0.0060) (0.0010) (0.0038)

T+1 -0.0432∗∗∗ -0.0408∗∗∗ -0.0396∗∗∗ -0.0377∗∗∗ -0.0404∗∗∗ -0.0418∗∗∗ -0.0381∗∗∗

(0.00965) (0.0120) (0.0102) (0.0089) (0.0100) (0.0010) (0.0078)

T+2 -0.0473∗∗∗ -0.0448∗∗∗ -0.0467∗∗∗ -0.0419∗∗∗ -0.0446∗∗∗ -0.0439∗∗∗ -0.0420∗∗∗

(0.0115) (0.0131) (0.00992) (0.0100) (0.0117) (0.0010) (0.0097)

T+3 -0.0480∗∗∗ -0.0481∗∗∗ -0.0542∗∗∗ -0.0447∗∗∗ -0.0483∗∗∗ -0.0459∗∗∗ -0.0450∗∗∗

(0.0123) (0.0135) (0.00919) (0.0105) (0.0121) (0.0010) (0.0090)

T+4 -0.0448∗∗∗ -0.0103∗ -0.0468∗∗∗ -0.0412∗∗ -0.0478∗∗∗ -0.0385∗∗∗ -0.0426∗∗∗

(0.0136) (0.00545) (0.0113) (0.0117) (0.0131) (0.0009) (0.0111)
Observations 10375145 10375145 10375145 10375145 10375145 10375145 10375145

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Source: American Community Survey 2008-2019, authors’ calculations. Each entry is a an event study coefficient,

calculated using a different estimation strategy. All specifications include state and time fixed effects, as well as a

vector of individual-level covariates (age and its square, race/ethnicity, marital status, number of children, and family

size). Standard errors are clustered at the state level. Column 1 presents the results of a tradition ordinary-least-

squares two-way fixed-effects event study specification. Column 2 presents the results of the estimation strategy

proposed in Gardner (2021). Column 3 presents the results of the estimation strategy proposed in Borusyak et al.

(2022). Column 4 presents the results of the estimation strategy proposed in Cengiz et al. (2019). Column 5 presents

the results of the estimation strategy proposed in de Chaisemartin & D’Haultfœuille (2020). Column 6 presents the

results of the estimation strategy proposed in Sun & Abraham (2021). Column 7 presents the results of the estimation

strategy proposed in Callaway & Sant’Anna (2021).
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